-
1 разность уровней
1) Military: difference in levels2) Engineering: difference, in levels3) Construction: difference of level, level difference4) Oil: difference of elevation5) Mechanic engineering: difference in height of levels6) Metrology: level difference (амплитуд, мощностей), level separation7) Makarov: head8) Electrical engineering: difference in level (подвеса проводов) -
2 на длине
На длине-- Cabins are spaced at 120 ft intervals, the difference in levels between terminals being 64 ft over the 700 ft distance.Русско-английский научно-технический словарь переводчика > на длине
-
3 располагаются на расстоянии ... друг от друга
Располагаются на расстоянии... друг от друга-- Cabins are spaced at 120 ft intervals, the difference in levels between terminals being 64 ft over the 700 ft distance.Русско-английский научно-технический словарь переводчика > располагаются на расстоянии ... друг от друга
-
4 нельзя ожидать, что
Нельзя ожидать, чтоThis difference of less than one point Rockwell C is not expected to induce such a large fatigue life difference.Because of the relatively small differences in fatigue life with the three levels of retained austenite, one would not expect that the large difference in life between the two materials could be attributed to retained austenite differences.Русско-английский научно-технический словарь переводчика > нельзя ожидать, что
-
5 модульный центр обработки данных (ЦОД)
модульный центр обработки данных (ЦОД)
-
[Интент]Параллельные тексты EN-RU
[ http://dcnt.ru/?p=9299#more-9299]
Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.
В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.
At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.
В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.
Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.
Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.
Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.
Was there a key driver for the Generation 4 Data Center?Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
Был ли ключевой стимул для разработки дата-центра четвертого поколения?
If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.
One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:
The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:
Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.The second worst thing we can do in delivering facilities for the business is to have too much capacity online.
А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.
This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
So let’s take a high level look at our Generation 4 designЭто заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
Давайте рассмотрим наш проект дата-центра четвертого поколенияAre you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.
It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.
From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.
Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:
Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.
С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.
Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.
Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.
Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.
Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.
Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.
Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
Мы все подвергаем сомнениюIn our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.
В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
Серийное производство дата центров
In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
Невероятно энергоэффективный ЦОД
And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
Строительство дата центров без чиллеровWe have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.
Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.
By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.
Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.
Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.
Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
Gen 4 – это стандартная платформаFinally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.
Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
Главные характеристики дата-центров четвертого поколения Gen4To summarize, the key characteristics of our Generation 4 data centers are:
Scalable
Plug-and-play spine infrastructure
Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
Rapid deployment
De-mountable
Reduce TTM
Reduced construction
Sustainable measuresНиже приведены главные характеристики дата-центров четвертого поколения Gen 4:
Расширяемость;
Готовая к использованию базовая инфраструктура;
Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
Быстрота развертывания;
Возможность демонтажа;
Снижение времени вывода на рынок (TTM);
Сокращение сроков строительства;
Экологичность;Map applications to DC Class
We hope you join us on this incredible journey of change and innovation!
Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.
Использование систем электропитания постоянного тока.
Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!
На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.
Generations of Evolution – some background on our data center designsТак что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
Поколения эволюции – история развития наших дата-центровWe thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.
Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.
It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.
Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.
We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.
Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.
No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.
Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.
As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.
Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.
This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.
Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.
Тематики
Синонимы
EN
Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)
-
6 оптимизация
оптимизация
Процесс отыскания варианта, соответствующего критерию оптимальности
[Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]
оптимизация
1. Процесс нахождения экстремума функции, т.е. выбор наилучшего варианта из множества возможных, процесс выработки оптимальных решений; 2. Процесс приведения системы в наилучшее (оптимальное) состояние. Иначе говоря, первое определение трактует термин «О.» как факт выработки и принятия оптимального решения (в широком смысле этих слов); мы выясняем, какое состояние изучаемой системы будет наилучшим с точки зрения предъявляемых к ней требований (критерия оптимальности) и рассматриваем такое состояние как цель. В этом смысле применяется также термин «субоптимизация» в случаях, когда отыскивается оптимум по какому-либо одному критерию из нескольких в векторной задаче оптимизации (см. Оптимальность по Парето, Векторная оптимизация). Второе определение имеет в виду процесс выполнения этого решения: т.е. перевод системы от существующего к искомому оптимальному состоянию. В зависимости от вида используемых критериев оптимальности (целевых функций или функционалов) и ограничений модели (множества допустимых решений) различают скалярную О., векторную О., мно¬гокритериальную О., стохастическую О (см. Стохастическое программирование), гладкую и негладкую (см. Гладкая функция), дискретную и непрерывную (см. Дискретность, Непрерывность), выпуклую и вогнутую (см. Выпуклость, вогнутость) и др. Численные методы О., т.е. методы построения алгоритмов нахождения оп¬тимальных значений целевых функций и соответствующих точек области допустимых значений — развитой отдел современной вычислительной математики. См. Оптимальная задача.
[ http://slovar-lopatnikov.ru/]Параллельные тексты EN-RU из ABB Review. Перевод компании Интент
The quest for the optimumВопрос оптимизацииThroughout the history of industry, there has been one factor that has spurred on progress more than any other. That factor is productivity. From the invention of the first pump to advanced computer-based optimization methods, the key to the success of new ideas was that they permitted more to be achieved with less. This meant that consumers could, over time and measured in real terms, afford to buy more with less money. Luxuries restricted to a tiny minority not much more than a generation ago are now available to almost everybody in developed countries, with many developing countries rapidly catching up.На протяжении всей истории промышленности существует один фактор, подстегивающий ее развитие сильнее всего. Он называется «производительность». Начиная с изобретения первого насоса и заканчивая передовыми методами компьютерной оптимизации, успех новых идей зависел от того, позволяют ли они добиться большего результата меньшими усилиями. На языке потребителей это значит, что они всегда хотят купить больше, а заплатить меньше. Меньше чем поколение назад, многие предметы считались роскошью и были доступны лишь немногим. Сейчас в развитых странах, число которых быстро увеличивается, подобное может позволить себе почти каждый.With industry and consumers expecting the trend towards higher productivity to continue, engineering companies are faced with the challenge of identifying and realizing further optimization potential. The solution often lies in taking a step back and looking at the bigger picture. Rather than optimizing every step individually, many modern optimization techniques look at a process as a whole, and sometimes even beyond it. They can, for example, take into account factors such as the volatility of fuel quality and price, the performance of maintenance and service practices or even improved data tracking and handling. All this would not be possible without the advanced processing capability of modern computer and control systems, able to handle numerous variables over large domains, and so solve optimization problems that would otherwise remain intractable.На фоне общей заинтересованности в дальнейшем росте производительности, машиностроительные и проектировочные компании сталкиваются с необходимостью определения и реализации возможностей по оптимизации своей деятельности. Для того чтобы найти решение, часто нужно сделать шаг назад, поскольку большое видится на расстоянии. И поэтому вместо того, чтобы оптимизировать каждый этап производства по отдельности, многие современные решения охватывают процесс целиком, а иногда и выходят за его пределы. Например, они могут учитывать такие факторы, как изменение качества и цены топлива, результативность ремонта и обслуживания, и даже возможности по сбору и обработке данных. Все это невозможно без использования мощных современных компьютеров и систем управления, способных оперировать множеством переменных, связанных с крупномасштабными объектами, и решать проблемы оптимизации, которые другим способом решить нереально.Whether through a stunning example of how to improve the rolling of metal, or in a more general overview of progress in optimization algorithms, this edition of ABB Review brings you closer to the challenges and successes of real world computer-based optimization tasks. But it is not in optimization and solving alone that information technology is making a difference: Who would have thought 10 years ago, that a technician would today be able to diagnose equipment and advise on maintenance without even visiting the factory? ABB’s Remote Service makes this possible. In another article, ABB Review shows how the company is reducing paperwork while at the same time leveraging quality control through the computer-based tracking of production. And if you believed that so-called “Internet communities” were just about fun, you will be surprised to read how a spin-off of this idea is already leveraging production efficiency in real terms. Devices are able to form “social networks” and so facilitate maintenance.Рассказывая об ошеломляющем примере того, как был усовершенствован процесс прокатки металла, или давая общий обзор развития алгоритмов оптимизации, этот выпуск АББ Ревю знакомит вас с практическими задачами и достигнутыми успехами оптимизации на основе компьютерных технологий. Но информационные технологии способны не только оптимизировать процесс производства. Кто бы мог представить 10 лет назад, что сервисный специалист может диагностировать производственное оборудование и давать рекомендации по его обслуживанию, не выходя из офиса? Это стало возможно с пакетом Remote Service от АББ. В другой статье этого номера АББ Ревю рассказывается о том, как компания смогла уменьшить бумажный документооборот и одновременно повысить качество управления с помощью компьютерного контроля производства. Если вы считаете, что так называемые «интернет-сообщества» служат только для развлечения,то очень удивитесь, узнав, что на основе этой идеи можно реально повысить производительность. Формирование «социальной сети» из автоматов значительно облегчает их обслуживание.This edition of ABB Review also features several stories of service and consulting successes, demonstrating how ABB’s expertise has helped customers achieve higher levels of productivity. In a more fundamental look at the question of what reliability is really about, a thought-provoking analysis sets out to find the definition of that term that makes the greatest difference to overall production.В этом номере АББ Ревю есть несколько статей, рассказывающих об успешных решениях по организации дистанционного сервиса и консультирования. Из них видно, как опыт АББ помогает нашим заказчикам повысить производительность своих предприятий. Углубленные размышления о самой природе термина «надежность» приводят к парадоксальным выводам, способным в корне изменить представления об оптимизации производства.Robots have often been called “the extended arm of man.” They are continuously advancing productivity by meeting ever-tightening demands on precision and efficiency. This edition of ABB Review dedicates two articles to robots.Робот – это могучее «продолжение» человеческой руки. Применение роботов способствует постоянному повышению производительности, поскольку они отвечают самым строгим требованиям точности и эффективности. Две статьи в этом номере АББ Ревю посвящены роботам.Further technological breakthroughs discussed in this issue look at how ABB is keeping water clean or enabling gas to be shipped more efficiently.Говоря о других технологических достижениях, обсуждаемых на страницах журнала, следует упомянуть о том, как компания АББ обеспечивает чистоту воды, а также более эффективную перевозку сжиженного газа морским транспортом.The publication of this edition of ABB Review is timed to coincide with ABB Automation and Power World 2009, one of the company’s greatest customer events. Readers visiting this event will doubtlessly recognize many technologies and products that have been covered in this and recent editions of the journal. Among the new products ABB is launching at the event is a caliper permitting the flatness of paper to be measured optically. We are proud to carry a report on this product on the very day of its launch.Публикация этого номера АББ Ревю совпала по времени с крупнейшей конференцией для наших заказчиков «ABB Automation and Power World 2009». Читатели, посетившие ее, смогли воочию увидеть многие технологии и изделия, описанные в этом и предыдущих выпусках журнала. Среди новинок, представленных АББ на этой конференции, был датчик, позволяющий измерять толщину бумаги оптическим способом. Мы рады сообщить, что сегодня он готов к выпуску.Тематики
EN
DE
FR
Русско-немецкий словарь нормативно-технической терминологии > оптимизация
7 оптимизация
оптимизация
Процесс отыскания варианта, соответствующего критерию оптимальности
[Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]
оптимизация
1. Процесс нахождения экстремума функции, т.е. выбор наилучшего варианта из множества возможных, процесс выработки оптимальных решений; 2. Процесс приведения системы в наилучшее (оптимальное) состояние. Иначе говоря, первое определение трактует термин «О.» как факт выработки и принятия оптимального решения (в широком смысле этих слов); мы выясняем, какое состояние изучаемой системы будет наилучшим с точки зрения предъявляемых к ней требований (критерия оптимальности) и рассматриваем такое состояние как цель. В этом смысле применяется также термин «субоптимизация» в случаях, когда отыскивается оптимум по какому-либо одному критерию из нескольких в векторной задаче оптимизации (см. Оптимальность по Парето, Векторная оптимизация). Второе определение имеет в виду процесс выполнения этого решения: т.е. перевод системы от существующего к искомому оптимальному состоянию. В зависимости от вида используемых критериев оптимальности (целевых функций или функционалов) и ограничений модели (множества допустимых решений) различают скалярную О., векторную О., мно¬гокритериальную О., стохастическую О (см. Стохастическое программирование), гладкую и негладкую (см. Гладкая функция), дискретную и непрерывную (см. Дискретность, Непрерывность), выпуклую и вогнутую (см. Выпуклость, вогнутость) и др. Численные методы О., т.е. методы построения алгоритмов нахождения оп¬тимальных значений целевых функций и соответствующих точек области допустимых значений — развитой отдел современной вычислительной математики. См. Оптимальная задача.
[ http://slovar-lopatnikov.ru/]Параллельные тексты EN-RU из ABB Review. Перевод компании Интент
The quest for the optimumВопрос оптимизацииThroughout the history of industry, there has been one factor that has spurred on progress more than any other. That factor is productivity. From the invention of the first pump to advanced computer-based optimization methods, the key to the success of new ideas was that they permitted more to be achieved with less. This meant that consumers could, over time and measured in real terms, afford to buy more with less money. Luxuries restricted to a tiny minority not much more than a generation ago are now available to almost everybody in developed countries, with many developing countries rapidly catching up.На протяжении всей истории промышленности существует один фактор, подстегивающий ее развитие сильнее всего. Он называется «производительность». Начиная с изобретения первого насоса и заканчивая передовыми методами компьютерной оптимизации, успех новых идей зависел от того, позволяют ли они добиться большего результата меньшими усилиями. На языке потребителей это значит, что они всегда хотят купить больше, а заплатить меньше. Меньше чем поколение назад, многие предметы считались роскошью и были доступны лишь немногим. Сейчас в развитых странах, число которых быстро увеличивается, подобное может позволить себе почти каждый.With industry and consumers expecting the trend towards higher productivity to continue, engineering companies are faced with the challenge of identifying and realizing further optimization potential. The solution often lies in taking a step back and looking at the bigger picture. Rather than optimizing every step individually, many modern optimization techniques look at a process as a whole, and sometimes even beyond it. They can, for example, take into account factors such as the volatility of fuel quality and price, the performance of maintenance and service practices or even improved data tracking and handling. All this would not be possible without the advanced processing capability of modern computer and control systems, able to handle numerous variables over large domains, and so solve optimization problems that would otherwise remain intractable.На фоне общей заинтересованности в дальнейшем росте производительности, машиностроительные и проектировочные компании сталкиваются с необходимостью определения и реализации возможностей по оптимизации своей деятельности. Для того чтобы найти решение, часто нужно сделать шаг назад, поскольку большое видится на расстоянии. И поэтому вместо того, чтобы оптимизировать каждый этап производства по отдельности, многие современные решения охватывают процесс целиком, а иногда и выходят за его пределы. Например, они могут учитывать такие факторы, как изменение качества и цены топлива, результативность ремонта и обслуживания, и даже возможности по сбору и обработке данных. Все это невозможно без использования мощных современных компьютеров и систем управления, способных оперировать множеством переменных, связанных с крупномасштабными объектами, и решать проблемы оптимизации, которые другим способом решить нереально.Whether through a stunning example of how to improve the rolling of metal, or in a more general overview of progress in optimization algorithms, this edition of ABB Review brings you closer to the challenges and successes of real world computer-based optimization tasks. But it is not in optimization and solving alone that information technology is making a difference: Who would have thought 10 years ago, that a technician would today be able to diagnose equipment and advise on maintenance without even visiting the factory? ABB’s Remote Service makes this possible. In another article, ABB Review shows how the company is reducing paperwork while at the same time leveraging quality control through the computer-based tracking of production. And if you believed that so-called “Internet communities” were just about fun, you will be surprised to read how a spin-off of this idea is already leveraging production efficiency in real terms. Devices are able to form “social networks” and so facilitate maintenance.Рассказывая об ошеломляющем примере того, как был усовершенствован процесс прокатки металла, или давая общий обзор развития алгоритмов оптимизации, этот выпуск АББ Ревю знакомит вас с практическими задачами и достигнутыми успехами оптимизации на основе компьютерных технологий. Но информационные технологии способны не только оптимизировать процесс производства. Кто бы мог представить 10 лет назад, что сервисный специалист может диагностировать производственное оборудование и давать рекомендации по его обслуживанию, не выходя из офиса? Это стало возможно с пакетом Remote Service от АББ. В другой статье этого номера АББ Ревю рассказывается о том, как компания смогла уменьшить бумажный документооборот и одновременно повысить качество управления с помощью компьютерного контроля производства. Если вы считаете, что так называемые «интернет-сообщества» служат только для развлечения,то очень удивитесь, узнав, что на основе этой идеи можно реально повысить производительность. Формирование «социальной сети» из автоматов значительно облегчает их обслуживание.This edition of ABB Review also features several stories of service and consulting successes, demonstrating how ABB’s expertise has helped customers achieve higher levels of productivity. In a more fundamental look at the question of what reliability is really about, a thought-provoking analysis sets out to find the definition of that term that makes the greatest difference to overall production.В этом номере АББ Ревю есть несколько статей, рассказывающих об успешных решениях по организации дистанционного сервиса и консультирования. Из них видно, как опыт АББ помогает нашим заказчикам повысить производительность своих предприятий. Углубленные размышления о самой природе термина «надежность» приводят к парадоксальным выводам, способным в корне изменить представления об оптимизации производства.Robots have often been called “the extended arm of man.” They are continuously advancing productivity by meeting ever-tightening demands on precision and efficiency. This edition of ABB Review dedicates two articles to robots.Робот – это могучее «продолжение» человеческой руки. Применение роботов способствует постоянному повышению производительности, поскольку они отвечают самым строгим требованиям точности и эффективности. Две статьи в этом номере АББ Ревю посвящены роботам.Further technological breakthroughs discussed in this issue look at how ABB is keeping water clean or enabling gas to be shipped more efficiently.Говоря о других технологических достижениях, обсуждаемых на страницах журнала, следует упомянуть о том, как компания АББ обеспечивает чистоту воды, а также более эффективную перевозку сжиженного газа морским транспортом.The publication of this edition of ABB Review is timed to coincide with ABB Automation and Power World 2009, one of the company’s greatest customer events. Readers visiting this event will doubtlessly recognize many technologies and products that have been covered in this and recent editions of the journal. Among the new products ABB is launching at the event is a caliper permitting the flatness of paper to be measured optically. We are proud to carry a report on this product on the very day of its launch.Публикация этого номера АББ Ревю совпала по времени с крупнейшей конференцией для наших заказчиков «ABB Automation and Power World 2009». Читатели, посетившие ее, смогли воочию увидеть многие технологии и изделия, описанные в этом и предыдущих выпусках журнала. Среди новинок, представленных АББ на этой конференции, был датчик, позволяющий измерять толщину бумаги оптическим способом. Мы рады сообщить, что сегодня он готов к выпуску.Тематики
EN
DE
FR
Русско-английский словарь нормативно-технической терминологии > оптимизация
8 оптимизация
оптимизация
Процесс отыскания варианта, соответствующего критерию оптимальности
[Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]
оптимизация
1. Процесс нахождения экстремума функции, т.е. выбор наилучшего варианта из множества возможных, процесс выработки оптимальных решений; 2. Процесс приведения системы в наилучшее (оптимальное) состояние. Иначе говоря, первое определение трактует термин «О.» как факт выработки и принятия оптимального решения (в широком смысле этих слов); мы выясняем, какое состояние изучаемой системы будет наилучшим с точки зрения предъявляемых к ней требований (критерия оптимальности) и рассматриваем такое состояние как цель. В этом смысле применяется также термин «субоптимизация» в случаях, когда отыскивается оптимум по какому-либо одному критерию из нескольких в векторной задаче оптимизации (см. Оптимальность по Парето, Векторная оптимизация). Второе определение имеет в виду процесс выполнения этого решения: т.е. перевод системы от существующего к искомому оптимальному состоянию. В зависимости от вида используемых критериев оптимальности (целевых функций или функционалов) и ограничений модели (множества допустимых решений) различают скалярную О., векторную О., мно¬гокритериальную О., стохастическую О (см. Стохастическое программирование), гладкую и негладкую (см. Гладкая функция), дискретную и непрерывную (см. Дискретность, Непрерывность), выпуклую и вогнутую (см. Выпуклость, вогнутость) и др. Численные методы О., т.е. методы построения алгоритмов нахождения оп¬тимальных значений целевых функций и соответствующих точек области допустимых значений — развитой отдел современной вычислительной математики. См. Оптимальная задача.
[ http://slovar-lopatnikov.ru/]Параллельные тексты EN-RU из ABB Review. Перевод компании Интент
The quest for the optimumВопрос оптимизацииThroughout the history of industry, there has been one factor that has spurred on progress more than any other. That factor is productivity. From the invention of the first pump to advanced computer-based optimization methods, the key to the success of new ideas was that they permitted more to be achieved with less. This meant that consumers could, over time and measured in real terms, afford to buy more with less money. Luxuries restricted to a tiny minority not much more than a generation ago are now available to almost everybody in developed countries, with many developing countries rapidly catching up.На протяжении всей истории промышленности существует один фактор, подстегивающий ее развитие сильнее всего. Он называется «производительность». Начиная с изобретения первого насоса и заканчивая передовыми методами компьютерной оптимизации, успех новых идей зависел от того, позволяют ли они добиться большего результата меньшими усилиями. На языке потребителей это значит, что они всегда хотят купить больше, а заплатить меньше. Меньше чем поколение назад, многие предметы считались роскошью и были доступны лишь немногим. Сейчас в развитых странах, число которых быстро увеличивается, подобное может позволить себе почти каждый.With industry and consumers expecting the trend towards higher productivity to continue, engineering companies are faced with the challenge of identifying and realizing further optimization potential. The solution often lies in taking a step back and looking at the bigger picture. Rather than optimizing every step individually, many modern optimization techniques look at a process as a whole, and sometimes even beyond it. They can, for example, take into account factors such as the volatility of fuel quality and price, the performance of maintenance and service practices or even improved data tracking and handling. All this would not be possible without the advanced processing capability of modern computer and control systems, able to handle numerous variables over large domains, and so solve optimization problems that would otherwise remain intractable.На фоне общей заинтересованности в дальнейшем росте производительности, машиностроительные и проектировочные компании сталкиваются с необходимостью определения и реализации возможностей по оптимизации своей деятельности. Для того чтобы найти решение, часто нужно сделать шаг назад, поскольку большое видится на расстоянии. И поэтому вместо того, чтобы оптимизировать каждый этап производства по отдельности, многие современные решения охватывают процесс целиком, а иногда и выходят за его пределы. Например, они могут учитывать такие факторы, как изменение качества и цены топлива, результативность ремонта и обслуживания, и даже возможности по сбору и обработке данных. Все это невозможно без использования мощных современных компьютеров и систем управления, способных оперировать множеством переменных, связанных с крупномасштабными объектами, и решать проблемы оптимизации, которые другим способом решить нереально.Whether through a stunning example of how to improve the rolling of metal, or in a more general overview of progress in optimization algorithms, this edition of ABB Review brings you closer to the challenges and successes of real world computer-based optimization tasks. But it is not in optimization and solving alone that information technology is making a difference: Who would have thought 10 years ago, that a technician would today be able to diagnose equipment and advise on maintenance without even visiting the factory? ABB’s Remote Service makes this possible. In another article, ABB Review shows how the company is reducing paperwork while at the same time leveraging quality control through the computer-based tracking of production. And if you believed that so-called “Internet communities” were just about fun, you will be surprised to read how a spin-off of this idea is already leveraging production efficiency in real terms. Devices are able to form “social networks” and so facilitate maintenance.Рассказывая об ошеломляющем примере того, как был усовершенствован процесс прокатки металла, или давая общий обзор развития алгоритмов оптимизации, этот выпуск АББ Ревю знакомит вас с практическими задачами и достигнутыми успехами оптимизации на основе компьютерных технологий. Но информационные технологии способны не только оптимизировать процесс производства. Кто бы мог представить 10 лет назад, что сервисный специалист может диагностировать производственное оборудование и давать рекомендации по его обслуживанию, не выходя из офиса? Это стало возможно с пакетом Remote Service от АББ. В другой статье этого номера АББ Ревю рассказывается о том, как компания смогла уменьшить бумажный документооборот и одновременно повысить качество управления с помощью компьютерного контроля производства. Если вы считаете, что так называемые «интернет-сообщества» служат только для развлечения,то очень удивитесь, узнав, что на основе этой идеи можно реально повысить производительность. Формирование «социальной сети» из автоматов значительно облегчает их обслуживание.This edition of ABB Review also features several stories of service and consulting successes, demonstrating how ABB’s expertise has helped customers achieve higher levels of productivity. In a more fundamental look at the question of what reliability is really about, a thought-provoking analysis sets out to find the definition of that term that makes the greatest difference to overall production.В этом номере АББ Ревю есть несколько статей, рассказывающих об успешных решениях по организации дистанционного сервиса и консультирования. Из них видно, как опыт АББ помогает нашим заказчикам повысить производительность своих предприятий. Углубленные размышления о самой природе термина «надежность» приводят к парадоксальным выводам, способным в корне изменить представления об оптимизации производства.Robots have often been called “the extended arm of man.” They are continuously advancing productivity by meeting ever-tightening demands on precision and efficiency. This edition of ABB Review dedicates two articles to robots.Робот – это могучее «продолжение» человеческой руки. Применение роботов способствует постоянному повышению производительности, поскольку они отвечают самым строгим требованиям точности и эффективности. Две статьи в этом номере АББ Ревю посвящены роботам.Further technological breakthroughs discussed in this issue look at how ABB is keeping water clean or enabling gas to be shipped more efficiently.Говоря о других технологических достижениях, обсуждаемых на страницах журнала, следует упомянуть о том, как компания АББ обеспечивает чистоту воды, а также более эффективную перевозку сжиженного газа морским транспортом.The publication of this edition of ABB Review is timed to coincide with ABB Automation and Power World 2009, one of the company’s greatest customer events. Readers visiting this event will doubtlessly recognize many technologies and products that have been covered in this and recent editions of the journal. Among the new products ABB is launching at the event is a caliper permitting the flatness of paper to be measured optically. We are proud to carry a report on this product on the very day of its launch.Публикация этого номера АББ Ревю совпала по времени с крупнейшей конференцией для наших заказчиков «ABB Automation and Power World 2009». Читатели, посетившие ее, смогли воочию увидеть многие технологии и изделия, описанные в этом и предыдущих выпусках журнала. Среди новинок, представленных АББ на этой конференции, был датчик, позволяющий измерять толщину бумаги оптическим способом. Мы рады сообщить, что сегодня он готов к выпуску.Тематики
EN
DE
FR
Русско-французский словарь нормативно-технической терминологии > оптимизация
9 вызван
•The unstable slope conditions were brought on by the permafrost.
•The phase difference is accountable (or chargeable) to gravity.
•The high levels of alkaline phosphatase may be associated with a tumor of...
•Laser-excited molecular fluorescence can be caused by species present in the flame gases.
•The fire was set by lightning.
•The ionization was produced by the charged particle.
•Such spectra are not sufficiently well resolved, which owes to the broad fluorescent vibronic bands.
•The strain is brought about (or caused) by pressure.
•Errors that may arise (or stem) from such disturbances...
•The production of foam is associated with a decrease in surface tension.
•These faults are attributable (or may be attributed) to the video head assembly.
•The fluctuations are due to roll eccentricity.
•The fire was induced by lightning.
•When combustion originates from local exposure...
•This increase results from (or is caused by, or stems from, or arises from, or is due to, or is brought about by)...
•These problems spring (or derive) from a number of different demands.
•This effect stems (or derives) from (or is due to, or is caused by) reduced blood circulation.
•Acute insufficiency may be triggered (or caused, or occasioned) by a generalized infection or massive stress.
•A major earthquake has never been triggered by a nuclear test explosion.
Русско-английский научно-технический словарь переводчика > вызван
10 вызван
•The unstable slope conditions were brought on by the permafrost.
•The phase difference is accountable (or chargeable) to gravity.
•The high levels of alkaline phosphatase may be associated with a tumor of...
•Laser-excited molecular fluorescence can be caused by species present in the flame gases.
•The fire was set by lightning.
•The ionization was produced by the charged particle.
•Such spectra are not sufficiently well resolved, which owes to the broad fluorescent vibronic bands.
•The strain is brought about (or caused) by pressure.
•Errors that may arise (or stem) from such disturbances...
•The production of foam is associated with a decrease in surface tension.
•These faults are attributable (or may be attributed) to the video head assembly.
•The fluctuations are due to roll eccentricity.
•The fire was induced by lightning.
•When combustion originates from local exposure...
•This increase results from (or is caused by, or stems from, or arises from, or is due to, or is brought about by)...
•These problems spring (or derive) from a number of different demands.
•This effect stems (or derives) from (or is due to, or is caused by) reduced blood circulation.
•Acute insufficiency may be triggered (or caused, or occasioned) by a generalized infection or massive stress.
•A major earthquake has never been triggered by a nuclear test explosion.
Русско-английский научно-технический словарь переводчика > вызван
11 основная масса
•The effect was related to the difference in surface tension between the bulk and the surface of the liquid.
II•The overwhelming bulk of the phenols, cresols, and xylenols is obtained from coal tar.
•The main body of ground water lies at deeper levels.
•The bulk of the heavy nuclei are formed by the fusion of...
Русско-английский научно-технический словарь переводчика > основная масса
12 постепенно
•The difference in temperature levels will be progressively (or gradually) reduced along the length of the unit.
•The voltage may be smoothly varied from... to...
•Rotating hydraulic motors were improved by degrees, over the years.
Русско-английский научно-технический словарь переводчика > постепенно
13 соответствовать
•The results are consistent with what is expected.
•The results check with observations.
•These trends in properties correlate (or accord) with our model of the atom.
•When the energy difference between the two levels is matched by the energy of the photons ( когда энергия фотонов соответствует... ).
•The molecular dimensions of the organic solvent match those of the solute.
•To every organism ( there) corresponds an abstract topological space and...
•The core identification tapes shall comply with the requirements for insulating papers.
•The instrument conforms to the specification.
•Equation (.26) fits the data fairly well.
•The numbers given to the contact blades are in line with the pin numbers on the octal base.
•Their analyses are in agreement (or in keeping) with experimental observations.
•The tooling is peculiar to the product being machined.
•This feed rate is appropriate to the length to be delivered.
•The position of the bulb corresponds to the true horizon.
•This will make the controlled variable response fall within the specifications.
•Because all chemical processes are reversible there is for every exoergic reaction a corresponding endoergic one.
Русско-английский научно-технический словарь переводчика > соответствовать
14 линия
arc, branch ж.-д., circuit, strip line, line, pin* * *ли́ния ж.
line; ( на графике) curveпо ли́нии — in the line of …располага́ться на одно́й ли́нии — be in line [be lined up] with one anotherли́нии расхо́дятся — lines divergeли́нии схо́дятся — lines convergeабоне́нтская ли́ния — subscriber's [individual, exchange] line, subscriber's loopабоне́нтская ли́ния заво́дится в многокра́тное по́ле [в по́ле остальны́х коммута́торов] — each subscriber's line appears in multiple at several operator's positionsабоне́нтская, возду́шная ли́ния — customer open wire line, open wire loopабоне́нтская, индивидуа́льная ли́ния — individual [direct exchange] line, one-party telephoneли́ния а́бриса картогр. — planimetric lineли́ния АВ ( электрокаротаж) — energizing [current, power] lineавтомати́ческая ли́ния маш. — (automatic) transfer line, transfer machineавтомати́ческая, жестяноба́ночная ли́ния — automatic can-making lineавтомати́ческая, ко́мплексная ли́ния маш. — integrated transfer line; integrated manufacturing systemавтомати́ческая, перенала́живаемая ли́ния маш. — versatile transfer lineавтомати́ческая, n [m2]-позици́онная ли́ния маш. — n -station transfer lineавтомати́ческая, прямолине́йная ли́ния маш. — in-line transfer machineавтомати́ческая ли́ния с ги́бкой свя́зью маш. — non-synchronous transfer lineавтомати́ческая ли́ния с жё́сткой свя́зью маш. — synchronous transfer lineавтомати́ческая ли́ния со спу́тниками маш. — pallet type transfer lineавтомати́ческая, стано́чная ли́ния — transfer lineавтомати́ческая ли́ния с управле́нием от ЭВМ маш. — computer-controlled transfer lineагони́ческая ли́ния геод. — zero [agonic] lineли́ния а́зимута — azimuth lineакусти́ческая ли́ния — acoustic lineантисто́ксова ли́ния — anti-Stokes lineли́ния апси́д астр. — line of apsidesатмосфе́рная ли́ния тепл. — air evacuation lineба́зисная ли́ния1. мат. reference line2. опт. base-lineбесконе́чная ли́ния1. мат. line at infinity2. эл. infinite lineва́куумная (отка́чная) ли́ния — vacuum pump lineли́ния вало́в — line of shaftingли́ния верши́н зу́бьев шестерни́ — face line of teethли́ния взлё́тно-поса́дочной полосы́, осева́я — runway centre lineли́ния ви́димого горизо́нта — sky-line, horizon lineли́ния ви́димого ко́нтура ( на чертеже) — object lineвизи́рная ли́ния ( логарифмической линейки) — hair-line, indicator hair-lineли́ния визи́рования геод. — axis [line] of sight, observing [sight(ing) ] lineвинтова́я ли́ния — helical line, helix, spiralдви́гаться по винтово́й ли́нии — move in a helix [in a spiral]винтова́я, кони́ческая ли́ния — conical helixвихрева́я ли́ния мат. — vortex [whirl] lineвихрева́я, за́мкнутая ли́ния мат. — closed vortex lineли́ния влия́ния — influence lineли́ния вну́тренней свя́зи — inland circuitли́ния возмуще́ний — Mach lineли́ния впа́дин шестерни́ — line of dents [dedendum line] of a gearли́ния вса́сывания — suction lineвходна́я ли́ния вчт. — input lineли́ния входя́щей свя́зи — incoming [inward] lineли́ния вы́борки вчт. — select (ion) lineвыносна́я ли́ния ( на чертеже) — extension lineвыпускна́я ли́ния — exhaust lineли́ния выру́ливания ( со стоянки) ав. — lead-off lineли́ния вы́ходов горн. — outcrop lineга́зовая ли́ния — gas lineли́ния генера́ции ( лазера) — lasing lineгеодези́ческая ли́ния — geodetic [geodesic] lineли́ния горизо́нта — sky-line, horizon lineгоризонта́льная ли́ния — level [horizontal] lineгорлова́я ли́ния мат. — striction line, line of striction (of a ruled surface)гребе́нчатая ли́ния элк. — comb (transmission) lineли́ния давле́ния — pressure lineли́ния да́льности рлк. — range lineли́ния движе́ния (частиц, электрона и т. п.) — trajectoryли́ния двоя́кой кривизны́ — line of double curvature, double-curved lineли́ния действи́тельного горизо́нта — true-horizon lineли́ния де́йствия — line of actionли́ния де́йствия си́лы — line of action of a forceли́ния де́йствия си́лы тя́жести — gravitational verticalли́ния де́йствия тя́ги — thrust line, axis of thrustли́ния де́йствующих забо́ев — line of active facesдиагра́ммная ли́ния — (X-ray) diagram lineли́ния дислока́ций — dislocation lineли́ния дислока́ций выхо́дит на пове́рхность криста́лла — the dislocation line terminates at the surface of the crystalдифракцио́нная ли́ния — diffraction [diffracted] lineдрена́жная ли́ния ( на самолёте) — vent lineли́ния ду́плекса, бала́нсная свз. — duplex artificial lineжелезнодоро́жная, грузонапряжё́нная ли́ния — heavy-traffic lineжелезнодоро́жная, двухпу́тная ли́ния — double-track railway lineжелезнодоро́жная, однопу́тная ли́ния — single-track railway lineли́ния жё́сткой тя́ги — pipe-lineжи́рная ли́ния — heavy [heavily drawn] lineли́ния забо́ев — faces lineли́ния забо́ев, дугообра́зная — arched line of faces, arched faces lineли́ния забо́ев, искривлё́нная — bowed faces lineли́ния загоризо́нтной свя́зи — beyond-the-horizon [over-the-horizon] communication linkли́ния за́данного пути́ [ЛЗП] ав. — брит. required [intended] track, track required, Tr. Req.; амер. course (line)ли́ния заде́ржки — delay lineли́ния заде́ржки, акусти́ческая — acoustic [sonic] delay lineли́ния заде́ржки без поте́рь — dissipationless delay lineли́ния заде́ржки, водяна́я — water delay lineли́ния заде́ржки, герметизи́рованная — potted delay lineли́ния заде́ржки, иску́сственная — artificial delay lineли́ния заде́ржки, ка́бельная — cable delay lineли́ния заде́ржки, ква́рцевая — quartz delay lineли́ния заде́ржки, компенси́рованная — equalized delay lineли́ния заде́ржки, магнитострикцио́нная — magnetostrictive delay lineли́ния заде́ржки, многокра́тная — multiple delay lineли́ния заде́ржки, ни́келевая — nickel delay lineли́ния заде́ржки, поло́сковая — strip delay lineли́ния заде́ржки, про́волочная — wire delay lineли́ния заде́ржки, регули́руемая — variable delay lineли́ния заде́ржки, рту́тная — mercury delay lineли́ния заде́ржки, спира́льная — helical [spiral] delay lineли́ния заде́ржки с распределё́нными пара́метрами — distributed-constant delay lineли́ния заде́ржки с сосредото́ченными пара́метрами — lumped-constant delay lineли́ния заде́ржки, твердоте́льная — solid-state (delay) line, solid delay lineли́ния заде́ржки, ультразвукова́я — ultrasonic delay lineли́ния заде́ржки, электромагни́тная — electromagnetic delay lineли́ния заказна́я ли́ния тлф. — record operator's line, record circuitли́ния залё́та топ. — flight lineли́ния запасны́х забо́ев — line of reserved facesзапрещё́нная ли́ния — forbidden lineли́ния зару́ливания ( на стоянку) ав. — lead-in lineзаря́женная ли́ния — line of chargeли́ния застро́йки — building lineли́ния зацепле́ния голо́вок — head-line of contact, top line of actionли́ния зацепле́ния но́жек зу́бьев — dedendum line of contactзна́ковая ли́ния мат. — directed lineзолоспускна́я ли́ния — sluice discharge pipe-lineли́ния зубча́того зацепле́ния — line of actionли́ния изги́ба ж.-д. — curvature lineли́ния излуче́ния ла́зера — laser emission lineизмери́тельная ли́ния элк. — slotted [measuring] line, standing-wave meterи́мпульсная ли́ния ( в гидравлических и пневматических системах) — impulse lineли́ния инфильтра́ции — line of percolationли́ния искажё́нных масшта́бов — zero lineиску́сственная ли́ния эл. — artificial lineли́ния исходя́щей свя́зи тлф. — outward [outgoing] lineли́ния кали́бра, нейтра́льная прок. — neutral line of a grooveли́ния каса́ния — line of contactли́ния каче́ния — line of rolling contactкоаксиа́льная ли́ния — coaxial lineкоаксиа́льная, жё́сткая ли́ния — rigid coaxial lineли́ния кольцева́ния ав. — cross-feed lineкома́ндная ли́ния рлк. — command linkкома́ндная, проводна́я ли́ния рлк. — wire command linkконверсио́нная ли́ния — conversion lineконта́ктная ли́ния эл. — contact-wire lineконтро́льная ли́ния геод. — check(ing) [control, test] lineко́нтурная ли́ния (напр. на карте) — contour lineли́ния концентра́ции возмуще́ния — Mach lineкороткоза́мкнутая ли́ния — short-circuited lineкотида́льная ли́ния навиг. — co-tidal lineли́ния крити́ческих то́чек аргд. — stagnation lineли́ния ку́рса ав. — брит. course (line); амер. headingли́ния ку́рса курсово́го маяка́ — localizer courseкурсова́я ли́ния ав. — heading lineла́зерная ли́ния — laser lineло́маная ли́ния — open polygon, broken [polygonal] lineли́ния Лю́дерса метал. — Lьder(s) [slip] lineмагистра́льная ли́ния — trunk [main] lineли́ния магни́тной инду́кции — line of magnetic flux, magnetic line of fluxма́зерная ли́ния — maser lineли́ния Ма́ки кфт. — Mackie lineмеридиа́нная ли́ния — meridian lineме́рная ли́ния мор. — trial courseли́ния метео́рной свя́зи — meteor-burst [meteor-scatter] linkли́ния нагнета́ния — discharge [delivery] lineнагру́женная ли́ния эл., радио — loaded lineназе́мная ли́ния — land [ground] lineли́ния наибо́льшего ска́та мат. — line of maximum inclination, steepest line (in a plane), line of greatest declivityли́ния наиме́ньшего сопротивле́ния — line of least resistanceли́ния напла́вки — line of fusionнапо́рная ли́ния ( в гидравлических и пневматических системах) — pressure lineли́ния направле́ния съё́мки афс. — course of flightнаправля́ющая ли́ния — directrixли́ния насыще́ния — saturation lineли́ния нача́ла отсчё́та — fiducial (reference, zero, datum) lineли́ния неви́димого ко́нтура ( на чертеже) — invisible [hidden] lineнедиагра́ммная ли́ния — non-diagram (X-ray) line, X-ray satelliteнейтра́льная ли́ния — neutral lineнеодноро́дная ли́ния свз. — non-uniform [heterogeneous] lineнепересека́ющаяся ли́ния — skew lineнеразрешё́нная ли́ния физ. — unresolved peakнесимметри́чная ли́ния свз. — unbalanced lineнесо́бственная ли́ния мат. — ideal lineнивели́руемая ли́ния — line of levelsнулева́я ли́ния — zero [null] lineли́ния нулево́го склоне́ния геод. — zero [agonic] lineли́ния нулевы́х значе́ний геод. — zero [agonic] lineобво́дная ли́ния ( в гидравлических и пневматических системах) — by-pass lineли́ния обмета́ния ( гребного винта) — sweep lineобра́тная ли́ния ( в гидравлических и пневматических системах) — return lineли́ния обруше́ния горн. — line of cavingли́ния обтека́ния — streamlineодноро́дная ли́ния свз. — uniform lineосева́я ли́ния — axis, centre lineли́ния основа́ния зу́бьев ( шестерни) — bottom line of teethли́ния основа́ния карти́ны топ. — axis of homology, axis of perspective, perspective axis, ground lineосно́вная ли́ния мор. — base-lineли́ния отве́са геод. — plumb (bob) lineотве́сная ли́ния — tire vertical (line)отве́сная ли́ния задаё́тся отве́сом — the vertical [line] is assumed as a plumb-lineли́ния отде́лочных клете́й прок. — finishing mill trainли́ния отко́са — shoulder [slope] lineли́ния отсчё́та — reference [dation] lineли́ния паде́ния горн. — line of dipли́ния па́лубы ( на теоретическом чертеже) — deck line, (на боковой проекции теоретического чертежа) sheer lineли́ния пе́ленга — bearing line, line of bearingли́ния переда́чи эл., радио — (transmission) lineвключа́ть ли́нию (переда́чи) на, напр. согласо́ванную нагру́зку — terminate a (transmission) line into, e. g., a matched loadзакора́чивать ли́нию переда́чи — short-circuit a (transmission) lineли́ния переда́чи излуча́ет эне́ргию — a (transmission) line radiatesли́ния переда́чи без поте́рь — loss-free [lossless] lineли́ния переда́чи да́нных вчт. — data lineли́ния переда́чи, дли́нная — long (transmission) lineли́ния переда́чи, закры́тая — close (transmission) lineли́ния переда́чи, коаксиа́льная — coaxial (transmission) lineли́ния переда́чи, многопроводна́я — multiwire (transmission) lineли́ния переда́чи, опти́ческая — optical transmission lineли́ния переда́чи, откры́тая — open (transmission) lineли́ния переда́чи, печа́тная элк. — printed lineли́ния переда́чи, пневмати́ческая — airpressure lineли́ния переда́чи, поло́сковая — strip (transmission) lineли́ния переда́чи, поло́сковая несимметри́чная — microstrip (transmission) lineли́ния переда́чи, поло́сковая, симметри́чная — strip (transmission) lineли́ния переда́чи, полуволно́вая — half wave (transmission) lineли́ния переда́чи, разо́мкнутая на конце́ — open-ended (transmission) lineли́ния переда́чи с больши́м затуха́нием — lossy lineли́ния переда́чи, сверхпроводя́щая — superconducting (transmission) lineли́ния переда́чи с поте́рями — lossy lineли́ния переда́чи, трё́хпластинчатая — tri-plate lineли́ния переда́чи, узкополо́сная — narrowband (transmission) lineли́ния переда́чи, широкопо́лосная — wideband (transmission) lineли́ния перели́ва — overflow lineли́ния пересече́ния — line of intersectionли́ния перспекти́вы топ. — perspective line, perspective rayли́ния пита́ния — supply [power] lineпита́ющая ли́ния — incoming transmission line, feederли́ния погруже́ния, преде́льная мор. — margin lineподводя́щая ли́ния ( в гидравлических и пневматических системах) — feeding lineли́ния полё́та — flight pathли́ния положе́ния [ЛП] навиг. — line of position, position line, LPвыходи́ть на ли́нию положе́ния — arrive at [strike] an LPоцифро́вывать ли́нию положе́ния коли́чеством микросеку́нд ра́зности вре́мени — identify a position line by its time-difference in msли́ния положе́ния, высо́тная — Sumner (position) lineли́ния положе́ния самолё́та [ЛПС] — aircraft-position line, APLполу́денная ли́ния геод. — magnetic north [meridian] lineли́ния по́ля — line of force, field line, line of fieldли́ния постоя́нной интенси́вности ви́хрей — isocurlusли́ния постоя́нной ско́рости — isovelпото́чная ли́ния — (continuous) production [flow] lineсходи́ть с пото́чной ли́нии ( с конвейера) — roll off a production [flow] lineпо́ясная ли́ния ( кузова мобиля) — waistlineли́ния проги́ба — deflection [bending] lineли́ния прока́тки — rolling [mill] trainли́ния промежу́точного перегре́ва, горя́чая тепл. — hot reheat lineли́ния промежу́точного перегре́ва, холо́дная тепл. — cold reheat lineли́ния промерза́ния стр. — frost lineли́ния простира́ния горн. — strike lineпряма́я ли́ния — straight lineдви́гаться по прямы́м ли́ниям — move [travel] in straight linesли́ния прямо́й ви́димости — line-of-sightпункти́рная ли́ния — dotted lineли́ния пути́ — track line, course line (Примечание. на практике в английской литературе наблюдается смешение track с course.)рабо́чая ли́ния проце́сса хим. — operating lineли́ния ра́вного потенциа́ла — co-potential lineли́ния равноде́нствия — equinoctial lineли́ния ра́вных высо́т геод. — line of equal elevationли́ния ра́вных пе́ленгов самолё́та [ЛРПС] — line of bearingsполуча́ть ли́нии ра́вных пе́ленгов самолё́та — develop lines of bearingsли́ния ра́вных скоросте́й — isotachрадиопроводна́я ли́ния — combined radio and wire linkли́ния радиосвя́зи — radio link, radio circuitли́ния радиосвя́зи, реле́йная — microwave line-of-signal, radio linkли́ния радиосвя́зи, реле́йная бли́жняя — short-haul radio linkли́ния радиосвя́зи, реле́йная да́льняя — long-haul radio linkрадиотелеметри́ческая ли́ния — radio-telemetry linkли́ния радиотелефо́нной свя́зи — radiotelephone circuitли́ния развё́ртки рлк., тлв. — beam trace, sweep-trace, scan(ning) traceли́ния разде́ла — boundary (line)разме́рная ли́ния ( на чертеже) — dimension lineли́ния разре́за ( на чертеже) — cutting lineразрешё́нная ли́ния1. resolved peak2. permissible [allowed] lineли́ния разъё́ма моде́ли литейн. — parting [joint] line of a patternли́ния разъё́ма фо́рмы литейн. — parting [joint] line of a mouldли́ния разъё́ма шта́мпа — die [flash] lineраспада́ющаяся ли́ния мат. — decomposed lineли́ния распростране́ния — line of propagationрасто́почная ли́ния тепл. — start-up lineли́ния расшире́ния — expansion lineреги́стровая ли́ния свз. — sender linkли́ния регре́ссии — regression line, line of regressionли́ния ре́зания горн. — cutting line, cutting horizonрезона́нсная ли́ния — resonance lineре́перная ли́ния — datum lineли́ния рециркуля́ции тепл. — recirculation lineли́ния сбро́са горн. — fault lineли́ния сверхрешё́тки крист. — superlattice lineсверхструкту́рная ли́ния — superstructure lineли́ния свя́зи — communication line, communication linkдемонти́ровать ли́нию свя́зи — dismantle a (communication) lineосвобожда́ть ли́нию свя́зи ( об абоненте) — get off [clear] the (communication) lineпередава́ть ли́нию свя́зи в эксплуата́цию — open a [the] (communication) line [circuit] for trafficпосыла́ть (сигна́л) в ли́нию свя́зи — transmit to a (communication) lineли́ния свя́зи испо́льзуется для, напр. телефони́и — the (communication) line carries, e. g., telephonyуплотня́ть ли́нию свя́зи — use a (communication) line for multichannel operationуплотня́ть ли́нию свя́зи, напр. 10 кана́лами — multiplex [derive], e. g., 10 channels on a (communication) lineуплотня́ть ли́нию свя́зи с вре́менным разделе́нием сигна́лов — time-multiplex a (communication) line, use a line for time-division multiplexуплотня́ть ли́нию свя́зи с часто́тным разделе́нием сигна́лов — frequency-multiplex a (communication) line, use a line for frequency-division multiplexуплотня́ть ли́нию свя́зи фанто́мной це́лью — phantom a (communication) line, set up [derive] a phantom circuit on a (communication) lineли́ния свя́зи, возду́шная — aerial lineли́ния связи́, двухпроводна́я — two-wire line, two-wire circuitли́ния свя́зи, двухце́пная — double-circuit lineли́ния свя́зи, ка́бельная — cable lineли́ния свя́зи, комбини́рованная — composite communication linkли́ния свя́зи, ме́стная — local circuitли́ния свя́зи, объединя́ющая тлф., телегр. — concentration lineли́ния свя́зи, однопроводна́я — single-wire circuit, single-wire lineли́ния свя́зи, одноцепна́я — single-circuit lineли́ния свя́зи, отходя́щая — offgoing lineли́ния свя́зи, при́городная тлф., телегр. — suburban line, short-haul toll circuitли́ния свя́зи, пупинизи́рованная — coil-loaded lineли́ния свя́зи, радиореле́йная — microwave relay [radio-relay] linkли́ния свя́зи, ретрансляцио́нная — relay linkли́ния свя́зи, служе́бная — order circuit, engineers order wireли́ния свя́зи, спа́ренная — two-party lineли́ния свя́зи, спу́тниковая — satellite communication linkли́ния свя́зи, столбова́я — pole lineли́ния свя́зи, тропосфе́рная — troposcatter [tropospheric-scatter] linkли́ния свя́зи, уплотнё́нная — multiplexed [multichannel] lineли́ния сгора́ния — combustion [ignition] lineсеку́щая ли́ния — secantли́ния се́тки координа́т — grid lineли́ния сжа́тия — compression lineсилова́я ли́ния — line of force, field line, line of fieldсилова́я, магни́тная ли́ния — magnetic line of forceли́ния скачка́ уплотне́ния — shock lineли́ния скольже́ния1. glide line2. метал. slip lineсливна́я ли́ния — drain lineслоева́я ли́ния крист. — layer lineсма́зочная ли́ния — lubrication lineли́ния сме́ны дат — date lineли́ния смеще́ния — displacement lineсоедини́тельная ли́ния ( между коммутационными узлами) тлф. — брит. junction (route), (inter-exchange) junction circuit; амер. trunkназнача́ть соедини́тельную ли́нию — allot a junction (route), assign a trunkсоедини́тельная, входя́щая ли́ния тлф. — incoming junction (route)соедини́тельная, исходя́щая ли́ния тлф. — outgoing junction (route)соедини́тельная, транзи́тная ли́ния тлф. — through-traffic junction (route), tandem [built-up] trunkли́ния сопротивле́ния, расчё́тная — calculated line of resistanceспектра́льная ли́ния — spectral [spectrum] lineвыделя́ть спектра́льную, ли́нию — isolate a spectral lineспектра́льная ли́ния раздва́ивается — the spectral line splitsспектра́льные ли́нии сближа́ются — (the) spectral lines crowd togetherспектра́льные ли́нии сгуща́ются — (the) spectral lines crowd togetherспектра́льные ли́нии характеризу́ют [позволя́ют определя́ть] веще́ства — substances are identified by spectral linesспектра́льная, враща́тельная ли́ния — rotational spectral lineспектра́льная, интенси́вная ли́ния — strong spectral lineспектра́льная, колеба́тельная ли́ния — vibrational spectral lineспектра́льная, ло́жная ли́ния — ghost spectral lineспектра́льная ли́ния поглоще́ния — absorption spectral lineспектра́льная, размы́тая ли́ния — diffuse spectral lineспектра́льная, рентге́новская ли́ния — X-ray spectral lineспектра́льная, сла́бая ли́ния — faint spectral lineспира́льная ли́ния — spiral (line), helixли́ния сплавле́ния — (weld-)fusion lineсплошна́я ли́ния ( на чертеже) — full [solid] lineспра́вочная ли́ния тлф. — information [inquiry] circuitсре́дняя ли́ния валко́в прок. — roll parting lineсре́дняя ли́ния про́филя прок. — camber lineсре́дняя ли́ния трапе́ции — median of a trapezoidли́ния степене́й то́чности — line of precisionсто́ксова ли́ния ( спектра) — Stokes lineстрикцио́нная ли́ния — gorge [striction] line, line of strictionли́ния сходи́мости — convergence lineли́ния теку́чести — flow lineтелеметри́ческая ли́ния — telemetry linkтелефо́нная ли́ния — ( совокупность технических устройств) telephone line; ( в переносном значении) connectionзанима́ть (телефо́нную) ли́нию — hold the connectionосвободи́ть (телефо́нную) ли́нию — clear the lineпрове́рить (телефо́нную) ли́нию на за́нятость — test a line for the engaged condition(телефо́нная) ли́ния занята́ ( ответ оператора) — the line is busy [engaged]теорети́ческая ли́ния мор. — moulded lineтехнологи́ческая ли́ния — production lineли́ния то́ка1. аргд. stream-lineвизуализи́ровать [де́лать ви́димой] ли́нию то́ка — visualize the stream-line2. ( векторного поля) line of flowли́ния то́ка, визуализи́рованная — traced stream-lineли́ния то́ка в крити́ческой то́чке — stagnation stream-lineли́ния то́ка, крити́ческая — stagnation stream-lineли́ния то́ка, раздели́тельная — discriminating [dividing] stream-lineто́лстая ли́ния ( на чертеже) — heavy lineтрансмиссио́нная ли́ния — transmission line, continuous line of shaftingли́ния труб — run of pipesли́ния тя́ги — draft lineли́ния уда́ра — line of impactузлова́я ли́ния — nodal lineуравни́тельная ли́ния тепл. — equalizing lineли́ния у́ровня мат. — contour [level] line, level curveли́ния факти́ческого пути́ ав. — брит. track made good, TMG; амер. trackфока́льная ли́ния — focal lineли́ния фо́кусов аргд. — aerodynamic centre lineфорва́куумная ли́ния — roughing-down lineли́ния форм релье́фа геод. — form [landform] lineфраунго́феровы ли́нии — Fraunhofer-linesхарактеристи́ческая ли́ния — characteristic lineходова́я ли́ния геод., топ. — computation course, computation line, routeхолоста́я ли́ния эл. — unloaded lineли́ния хо́рды ав. — chord lineли́ния це́нтров — line of centres, centre lineли́ния це́нтров давле́ния — centre-of-pressure lineцепна́я ли́ния мат. — catenary, catenary curve, catenary lineли́ния четырёхвалко́вых клете́й прок. — quarto trainчистова́я петлева́я ли́ния прок. — looping finishing trainли́ния широты́ навиг. — line of latitudeли́ния шри́фта — type lineли́ния шри́фта, ве́рхняя — top line of type faceли́ния шри́фта, ни́жняя — bottom line of type faceштрихпункти́рная ли́ния — dash-dot lineэквипотенциа́льная ли́ния — equipotential lineли́ния электропереда́чи [ЛЭП] — (electric) power lineменя́ть ли́нию электропереда́чи — re-string a power lineнаве́шивать ли́нию электропереда́чи — string a (power) lineосуществля́ть высокочасто́тную обрабо́тку ли́нии электропереда́чи — install carrier-frequency trapping and coupling equipment on a power lineли́ния электропереда́чи (нахо́дится) под напряже́нием — the power line is hot [live]ли́ния электропереда́чи, возду́шная — aerial power lineли́ния электропереда́чи высо́кого напряже́ния — high-voltage power lireли́ния электропереда́чи, грозоупо́рная — lightning-resistant power lineли́ния электропереда́чи, ка́бельная — cable power lineли́ния электропереда́чи, подзе́мная — underground [buried] power lineэтало́нная ли́ния — standard lineли́ния этало́нной заде́ржки — standard delay line15 ход
course, ( доменной печи) drive, driving, excursion, computation line геод., line, ( механизма) move, movement, ( шагающих балок) pitch метал., run, process, route, running, stroke, (напр. поршня) throw, trace, tracing, traverse, way* * *ход м.1. ( движение) motion, move, movementво вре́мя хо́да су́дна — while the ship is underwayна ходу́ (напр. регулировать) — (e. g., adjust) on the goсвои́м хо́дом (о судне, автомобиле и т. п.) — under its own power3. (работа, эксплуатация) operation, service, actionпуска́ть в ход — put into operation, put into service, put into actionрабо́тать на холосто́м ходу́ — idle, run idle, run without loadсодержа́ть на ходу́ (напр. машины и т. п.) — keep (e. g., machines, etc.) in operation [in service, on the go]4. ( в теплообменном устройстве) pass5. (развитие чего-л.) progress, course6. ( скорость) rate, speed7. (место, через которое проходят) passage; ( вход) entrance, entry8. (изменение или характер изменения какой-л. физической величины, как правило, в зависимости от другой) behaviour, change, dependence, variation9. геод., топ. computation course, computation line, route, traverse10. (вид движения в транспортных средствах; существует только в сочетаниях с определяющими словами):на гу́сеничном ходу́ — on tracks, tracked, track-layingна колё́сном ходу́ — on wheels, wheeledазимута́льный ход — azimuth(al) motionход амортиза́тора — travelпри хо́де растяже́ния амортиза́тора — during extension …при хо́де сжа́тия амортиза́тора — during contraction …ход бата́на текст. — path of lay, stroke of latheход без толчко́в — smooth motionбесшу́мный ход — silent [noiseless] runningход вверх — upstroke, upward [ascending] strokeход вниз — downstroke, downward [inward, descending] strokeход впу́ска двс. — suction [admission, intake, charging] strokeвременно́й ход — time dependence, time variation, variation (of smth.) with timeход вса́сывания двс. — suction [admission, charging, intake] strokeход вы́пуска двс. — outstroke, exhaust strokeвысо́тный ход физ. — altitude curve, height dependence, altitudinal variationsдвойно́й ход — double strokeход до́менной пе́чи — run [operation] of a blast furnaceход зави́симости — variation, dependenceход зави́симости, напр. x от y — plot of x as a function of y, behaviour of x with (variations in) y, variations in x with yза́дний ход — reverse movement; reverse [backward] running; ж.-д. moving back, return motion; (поршня, ползуна) back strokeза́мкнутый ход геод. — closed circuitзо́льный ход кож. — line roundход иглы́ ( распылителя в топливной аппаратуре дизелей) — needle liftход каре́тки1. вчт. carriage movement2. текст. pitch of the coilход конта́ктов — contact travelход криво́й — ( имеется в виду кривая как таковая) trend [shape, run] of a curve; (имеется в виду какая-л. физическая величина, представленная кривой):ход криво́й ано́дного то́ка в зави́симости от се́точного напряже́ния пока́зывает, что … — a plot of anode current against grid voltage shows that …, the manner in which anode current varies with grid voltage shows that …, the behaviour of anode current with (variations in) grid voltage shows that …лесоспла́вный ход — floating routeли́тниковый ход — sprueход луча́ опт. — ray path (length)стро́ить ход луча́ — set up [trace] a rayмагистра́льный ход геод. — main [primary, principal] traverseма́лый ход мор. — low [slow] speedход маши́ны — machine runningмё́ртвый ход ( зазор в механизме) — backlash, lost motion, play, free travel, slackход нагнета́ния двс. — pressure strokeнеравноме́рный ход — irregular [discontinuous, uneven] runningнивели́рный ход — line of levels, level(ling) lineобра́тный ход — reverse [return] motion; reverse [backward] running; back strokeодина́рный ход — single strokeход педа́ли авто — pedal stroke, pedal travelход педа́ли сцепле́ния, свобо́дный — clutch pedal clearance, free travel of the clutch pedalпере́дний ход — forward motion; forward running; мор. advancing, aheadingперекидно́й ход ( коксовой печи) — cross-over flueход пе́чи — run [operation, working] of a furnaceрасстро́ить ход пе́чи — disturb [upset] the operation of a furnaceход пе́чи, горя́чий — hot run of a furnaceход пе́чи, неро́вный — erratic [irregular] operation of a furnaceход пе́чи, расстро́енный — disturbed operation of a furnaceход пе́чи, ро́вный — smooth [regular] operation of a furnaceход пе́чи, сты́лый — cold working of a furnaceход пе́чи, ти́хий — slow run [slow operation] of a furnaceход пе́чи, холо́дный — cold run of a furnaceход пилообра́зного напряже́ния элк. — stroke of a sawtooth voltageход пилообра́зного напряже́ния, обра́тный элк. — return stroke of a sawtooth voltageход пилообра́зного напряже́ния, прямо́й элк. — forward stroke of a sawtooth voltageход пилообра́зного напряже́ния, рабо́чий элк. — working stroke of a sawtooth voltageход пла́вки — progress of a heatпла́вный ход — smooth runningход плу́га — plough travel, plough draughtход подве́ски — suspension movementполигонометри́ческий ход — traverse, polygon(al) [polygonometric] traverse, polygonal courseпо́лный ход мор. — full speedрабо́чий ход двс. — working [power] strokeход развё́ртки (осциллоскопа, индикатора и т. п) — sweep motionход (развё́ртки), обра́тный — retrace (motion) of the sweep, flybackход (развё́ртки), прямо́й — forward motion of the sweep, active phase of the sweep scanход расшире́ния — двс. expansion [working, combustion, firing] stroke; ( амортизатора) extensionса́мый ма́лый ход мор. — dead slow speedса́мый по́лный ход мор. — flank speedсвобо́дный ход — free (easy) running, free travel; free wheelingход сжа́тия — compression [pressure] stroke; ( рессоры или пружины) bump stroke; ( амортизатора) contractionспоко́йный ход — smooth [quiet] runningсре́дний ход мор. — half [moderate] speedсу́точный ход — day [diurnal] variationсу́точный ход магни́тного склоне́ния — diurnal changes in magnetic variaticsтеодоли́тный ход — field [theodolite] traverseто́почный ход — (furnace) flueхолосто́й ход — idle [free, light, loose, no-load] running, idle [no-load] strokeпри холосто́м хо́де эл. — at no-loadход часо́в — daily rate (of a time niece)ход часо́в, отрица́тельный — rate of losingход часо́в, положи́тельный — rate of gainingчасто́тный ход (какой-л. физической величины) — variations with frequencyперепа́д мо́щности определя́ется часто́тным хо́дом перехо́дного ослабле́ния ответви́теля — the change in power is determined by variations in the dynamic attenuation of the coupler with frequencyчасто́тный ход оши́бки — the difference in error between the limiting frequenciesчасто́тный ход усиле́ния — plot of gain as a function of frequency, frequency dependence of gain, variations in gain with frequencyшу́мный ход — noisy runningход электро́нного луча́, обра́тный — flyback, return trace, retraceгаси́ть обра́тный ход электро́нного луча́ — eliminate [suppress, blank] the flyback [return trace, retrace]ход электро́нного луча́, обра́тный по вертика́ли — vertical flybackход электро́нного луча́, обра́тный по горизонта́ли — horizontal flybackход электро́нного луча́, обра́тный по ка́дру — frame flybackход электро́нного луча́, обра́тный по строке́ — line flybackход я́коря — armature travel16 суммарное влияние
Суммарное влияние-- The difference in energy levels between the staffs 1 and 6 indicates the gross effect of the reef on the wave.Русско-английский научно-технический словарь переводчика > суммарное влияние
17 ход каретки
1. вчт. carriage movementкаретка, несущая трафаретную раму — screen frame carriage
2. текст. pitch of the coilход кривой — trend of a curve;:
обратный ход — reverse motion; reverse running; back stroke
ход расширения — expansion stroke; extension
ход сжатия — compression stroke; bump stroke; contraction
перепад мощности определяется частотным ходом переходного ослабления ответвителя — the change in power is determined by variations in the dynamic attenuation of the coupler with frequency
См. также в других словарях:
Difference due to Memory — (Dm) indexes differences in neural activity during the study phase of an experiment for items that subsequently are remembered compared to items that are later forgotten. It is mainly discussed as an event related potential (ERP) effect that… … Wikipedia
Difference and Repetition — … Wikipedia
Difference in differences — (DID) (sometimes Diff in Diffs ) is a quasi experimental technique used in econometrics that measures the effect of a treatment at a given period in time. It is often used to measure the change induced by a particular treatment or event, though… … Wikipedia
Levels-of-processing effect — The levels of processing effect, identified by Fergus I. M. Craik and Robert S. Lockhart in 1972, describes memory recall of stimuli as a function of the depth of mental processing. A stimulus’s mental processing depth is determined by… … Wikipedia
difference + politics — by Paul Patton Deleuze s ontological conception of a world of free differences suggests a defence of the particular against all forms of universalisation or representation. Every time there is representation, he argues, there is an… … The Deleuze dictionary
difference + politics — by Paul Patton Deleuze s ontological conception of a world of free differences suggests a defence of the particular against all forms of universalisation or representation. Every time there is representation, he argues, there is an… … The Deleuze dictionary
difference — Although increasingly employed with reference to ethnic, class, and age divisions within social groups, the term ‘difference’ was initially used by ‘second wave’ feminist writers, who defined the term politically, seeing it as a polarity both… … Dictionary of sociology
Difference hierarchy — In set theory, the difference hierarchy over a pointclass is a hierarchy of larger pointclasses generated by taking differences of sets. If Γ is a pointclass, then the set of differences in Γ is . In usual notation, this set is denoted by 2 Γ.… … Wikipedia
Nested RAID levels — Levels of nested RAID,[1] also known as hybrid RAID,[2] combine two or more of the standard levels of RAID (redundant array of independent disks) to gain performance, additional redundancy, or both. Contents 1 Nesting 2 RAID 0+1 … Wikipedia
Tirone Levels — A series of three sequentially higher horizontal lines used to identify possible areas of support and resistance for the price of an asset. The position of the center line is plotted by calculating the difference between the highest high and the… … Investment dictionary
Standard RAID levels — The standard RAID levels are a basic set of RAID configurations and employ striping, mirroring, or parity.The standard RAID levels can be nested for other benefits ( see Nested RAID levels ). Concatenation (SPAN) The controller treats each drive… … Wikipedia
Перевод: с русского на все языки
со всех языков на русский- Со всех языков на:
- Русский
- С русского на:
- Все языки
- Английский
- Немецкий
- Французский